T39_RECUPERATION
PROGRAM TEST_T39
VAR
X,Y,Z: REAL;
O1,O2,O3: REAL;
FB: LIB.HVAC.V1_0.T39_RECUPERATION;
END_VAR
FB(DEMAND:= X, T_EXTERIOR:= Y, T_EXHAUST:= Z);
O1:= FB.HEATDEMAND;
O2:= FB.COOLDEMAND;
O3:= FB.RECUPERATION;
END_PROGRAM
LIB\HVAC
V1.0
The block is a decision and control element for heat (or cool) recovery strategy at an air handling unit with mixing dampers or heat recovery plate / wheel. Based on heating or cooling demands from an air supply temperature controller and outside (T_EXTERIOR) and exhaust (T_EXHAUST) temperatures, it generates three control sequences:
Input | Type | Description | Default value |
---|---|---|---|
DEMAND | REAL | Heating or cooling demand, -100 (cooling) ...100 (heating) (%) | 0 |
T_EXTERIOR | REAL | AHU inlet temperature, or outside air temperature (°C) | 0 |
T_EXHAUST | REAL | AHU extract temperature, or room temperature (°C) | 0 |
DCREC | REAL | Cooling demand to start recovery (creates dead band), typically -5 (%) | -5 |
DCVLV | REAL | Cooling demand to start cooling sequence, 0...100 (%) | -10 |
DHREC | REAL | Heating demand to start recovery (creates dead band), typically 5 (%) | 50 |
DHVLV | REAL | Heating demand to start heating sequence, 0...100 (%) | 70 |
Output | Type | Description |
---|---|---|
RECUPERATION | REAL | Signal for the heat/cool recovery actuator, 0...100 (%) |
COOLDEMAND | REAL | Cooling valve signal, 0...100 (%) |
HEATDEMAND | REAL | Heating valve signal, 0...100 (%) |
COOLRECREADY | BOOL | Signal that the decision logic is ready to recuperate cooling energy (see point 4 below) |
HEATRECREADY | BOOL | Signal that the decision logic is ready to recuperate heating energy (see point 2 below) |
The DEMAND signal must be set so as to change from 0 to 100 % when the AHU has to heat, and 0…-100 % for the cooling operation. The signal source is usually a supply air PI controller.
The insensitivity parameters, DCREC and DHREC, specify at which DEMAND signal the heat recovery shall be started. They prevent from operating the heat recovery aggregate at low demand levels.
The internal block logic specifies which of the four situations below is active:
At situations 1 and 3, the heating and cooling outputs (HEATDEMAND a COOLDEMAND) behave in the same way as if they were connected directly to the supply air controller output (with the corresponding cooling sequence recalculation, i.e. 0 % - cooling valve fully closed, -100 % - cooling valve fully open). The RECUP output is permanently at 0.
At situations 2 and 4 first of all the heat recovery sequence is activated, and if the energy demand still increases (as given by the PI algorithm of the supply air controller), the heating or cooling valve opens. The parameters DCVLV and DHVLV specify the energy contributions of heat recovery process and direct heating / cooling: the more the heat recovery system power is against the heating or cooling register maximum power, the higher the parameter values should be.
The valve sequences 0...100 % are recalculated between DCVLV (or DHVLV) and -100 % (or 100 %), see figure below.
The function B80 reverses the bypass damper sequence from 0...100 % to 100...0 % so that at maximum heat recovery demand the damper closes fully.
The MAX block, maximum of two signals, adds valve opening demand coming from the frost protection controller.